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Biological and chemical methods for production and 
screening of huge arrays of chemical structures provide 
an exciting alternative to synthesis and testing of 
compounds sequentially.1-5 Notable among these are 
reiterative division/coupling/recombination syntheses 
for producing arrays of beads (or other units of unique 
solid support sites) each displaying single, but different, 
organic molecules (Scheme I).6 - 8 The beads are screened 
in one reaction vessel with the substrates on the solid 
phase, or "plated out" into small groups (e.g., each of 
10 beads), so that the substrates can be liberated into 
solution for testing. Such technologies facilitate con­
venient, rapid, screening for biologically significant 
intermolecular interactions.9 

The chemical literature offers no guidelines on the 
number of beads that should be used to prepare reitera­
tive division/coupling/recombination libraries. Statisti­
cal considerations are critical in this regard, but they 
are also nontrivial. There are three important factors 
in this type of experiment (see Scheme 1 for some 
definitions of algebraic terms): (i) the number of pos­
sibilities (i.e., the extent of the "combinatorial space", 
nl), (ii) the fraction of that number that is likely to be 
produced given the random nature of the experiment 
{i.e., 1 — q, where q is the fraction of the combinatorial 
space that is likely to be missed), and (iii) the level of 
confidence with which the coverage of combinatorial 
space can be asserted (i.e., the degree of certainty 
associated with this value q, expressed as 1 - p, where 
p is the fraction of uncertainty). This paper relates the 
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Scheme 1. Outline of Typical Divide, Couple, and 
Recombine Technologies 

(i) choose number of beads (fx «') 

1 
(ii) divide into n reaction vessels 

and couple with n reagents 

1 
(iii) combine and mix beads 

1 
(iv) repeat steps (ii) and (iii) for a total of / cycles 

1 
(v) screen library for bioactivity, or divide library into 

v equal aliquots and use these as separate libraries 
in y different screening experiments 

number of beads used to the extent of combinatorial 
space and the variables p and q. For the purposes of 
this analysis, it is assumed that all the coupling 
reactions are 100% efficient; hence, each possible com­
bination of molecular entities is equally likely to form. 

Two ways were chosen to address the statistical 
problem outlined above, and the first of those was via 
computer simulations. In every experiment the number 
of beads used should be greater than the extent of 
combinatorial space (i.e. > nl) by some "multiplicative 
factor", f. A FORTRAN program was devised to simu­
late the library, then to narrow down the range of 
possible f values using a trial-and-error approach (see 
supplementary material). Table 1 displays f values 
simulated (i.e., /aim) for a confidence level of 99 % (i.e., 1 
— p = 0.99). The data are expressed at three different 
levels of coverage (where coverage = {1 - q} x 100%). 
Thus, for a library formed by a divide, couple, and 
combine sequence involving 10 different reagents (n = 
10) and five cycles (/ = 5), it was shown that 95% (i.e., 
q = 0.05) of the combinatorial space (i.e., 0.95 x 105) 
was covered with 99% confidence if a multiplicative 
factor of 3.026 were applied (i.e., 3.026 x 105 beads were 
used). 

This simulation method provides a statistically ac-
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Table 1. Computer Simulated (sim) and Calculated (calc) f 
Factors for a Library of 10 Reactions (ie n = 10) Applied for 
Three to Five Cycles of Divide, React, and Combine (ie 1 = 3-
at the 99% Confidence Level (ie p = 0.01)" 

(a) 

•5) 

% coverage 
[{1 -<?} x 100%] 

90 
95 
99 

factor/"(where 

1 = 3 
(sim/calc) 

2.470/2.525 
3.270/3.317 
5.300/5.323 

no. beads required =fx n') 

I = A: 
(sim/calc) 

2.370/2.372 
3.090/3.097 
4.840/4.840 

1 = 5 
(sim/calc) 

2.322/2.324 
3.026/3.027 
4.678/4.678 

a Definitions: f= the multiplicative factor, the product of this 
factor and the combinatorial space (nl) represents the number of 
beads to be used; n = number of reagents; I = number of reiterative 
cycles of divide, couple, and combine; q = acceptable fraction of 
combinatorial space likely to be missed; p = acceptable fraction 
of uncertainty. The percent coverage is defined as {1 - q} x 100%. 

curate representation of library composition, but the 
volume of data that must be stored makes it computa­
tionally expensive. This issue became important, for 
instance, when simulations were attempted for libraries 
involving 19 different reagents in each cycle. Thus it 
was possible to calculate t h a t / = 2.370 for a library for 
which I = 3, n = 19, q = 0.10 {i.e., 2.370 x 193 beads 
would be required to cover 90% of combinatorial space 
with 99% confidence), and that the f value was only 
slightly less (/= 2.32) for an analogous library involving 
four cycles (I — 4). However, the corresponding calcula­
tion for a library formed by using five cycles became too 
computationally expensive to be handled conveniently 
without a supercomputing resource. 

Relatively large libraries are important in combina­
torial chemistry. For example, a typical objective might 
be to prepare a library of all possible pentapeptides 
using all the protein amino acids except Cys, for which 
the combinatorial space is 195. The limitations of 
computer simulations therefore led us to explore an 
algebraic approximation that could be used for large 
libraries. Consequently, eq 1 was developed to ap­
proximate the reiterative divide and combine experi­
ment for libraries involving much combinatorial space.10 

Briefly, eq 1 was derived using an asymptotic ap-

f--
foq + h- J{2q + hf - 4(1 + h)q2\ 

M 2(TTI) 1 (1) 

proximation of the joint distribution function of the 
observed numbers for each sequence (see supplementary 
material). The value of h in equation 1 is zp

2lnl, and zp 

is the "(1 - p) quantile of standard normal distribution" 
which can be found by locating (1 - p) in "standard 
normal probability tables", which can be found in almost 
any collection of standard statistical tables.11 

Table 1 compares the f values simulated computa­
tionally, with values calculated using eq 1. The match 
is good for these relatively small libraries, and better 
for larger ones. For example, in another calculation it 
was shown that for a library for which n = 19, I = 3, 
and q=p = 0.01, the simulated and calculated /"values 
are /Sim = 4.880, and/caic = 4.884, respectively. Signifi­
cantly, when the number of reagents and/or the number 
of cycles is large, the value of h approaches 0 and eq 1 
collapses to eq 2. Consequently, for very large libraries 

f= ~log{q} (2) 

10 12 
no. of cycles of divide, couple and combine, I 

(b) 

no. of cycles of divide, couple and combine, I 

Figure 1. Multiplicative factors, fCE\c, calculated from eq 1, 
and expressed as functions of the number of cycles of divide, 
couple, and combine, I, for (a) 95% coverage {i.e., (1 — q) x 
100% = 95%} and (b) 99% coverage. The curves, from top to 
bottom, correspond to n = 3, 5, 10, 19, and 26, respectively, 
where n is the number of reagents. 
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the factor / is simply related to the required degree of 
coverage (1 — q; hence, f = 2.9957 for 95% coverage, 
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no. of cycles of divide, couple and combine, I 

Figure 2. Simulated and calculated multiplicative factors, 
/sim and /caic, as functions of the number of cycles of divide, 
couple, and combine, I. The number of reagent n in each cycle 
was five, the coverage {(1 - q) x 100%} was 95%, the fractional 
uncertainty p was 0.01. 

and 4.6052 for 99%). This can also be seen from Figure 
1: the factors /"approach a minimum value when the 
extent of combinatorial space is large (an/value of ca. 
3.0 in Figure la, and ca. 4.6 in Figure lb). In general 
terms, the data in Figure 1 shows that the multiplica­
tive factor/is relatively high for smaller libraries (small 
numbers of reagents n and/or cycles I). For larger 
libraries /converges to a minimum value which is then 
governed by the required level of coverage and degree 
of confidence (functions of q andp, respectively). 

Figure 2 shows /Sim and /caic for a library for which n 
= 5, q = 0.05, and p = 0.01. This graph shows eq 1 
does not give an accurate approximation for very small 
libraries. In fact, the calculated multiplicative factor 
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/"caic is always higher than the "true" value fBim- The 
difference between /Caic and fSim is a function of nl and 
only becomes significant when this is a relatively small 
value. Consequently, simulation via computation is the 
preferred approach for small libraries, but eq 1 is still 
useful for calculating a conservative value of the abso­
lute minimum multiplicative factor that should be 
applied. 

Finally, we used computer simulations to analyze the 
situation in which a library is prepared then split into 
y equal portions to use my different experiments. This 
scenario is of interest because when many libraries are 
to be tested they might be prepared in one big batch, 
then split. If no coverage is lost in the final division, y 
x f x nl beads will be required. Conversely, if some 
coverage is lost then the number of beads required will 
be c x y x f x nl, where c is come correction factor 
greater than unity. The simulated c values were 1.003 
for three libraries for which n = I =5, q = 0.05, p = 
0.01, andy = 2, 3, or 4 (fsim = 3.152 throughout). Thus 
it seems that for combinatorial space of 55 or more, only 
marginally more beads are required to maintain the 
same percent coverage at the same confidence level 
when several libraries are prepared in one operation. 
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programs used to simulate the libraries and key steps in the 

derivation of eq 1 (8 pages). Order ing information is given on 
any cur rent mas thead page. 
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